Abstract

Litter decomposition is a key ecosystem process, relevant for the release and storage of nutrients and carbon in soil. Soil fungi are one of the dominant drivers of organic matter decomposition, but fungal taxa differ substantially in their functional ability to decompose plant litter. Knowledge is mostly based on observational data and subsequent molecular analyses and in vitro studies have been limited to forest ecosystems. In order to better understand functional traits of saprotrophic soil fungi in grassland ecosystems, we isolated 31 fungi from a natural grassland and performed several in vitro studies testing for i) leaf and wood litter decomposition, ii) the ability to use carbon sources of differing complexity, iii) the enzyme repertoire. Decomposition strongly varied among phyla and isolates, with Ascomycota decomposing the most and Mucoromycota decomposing the least. The phylogeny of the fungi and their ability to use complex carbon were the most important predictors for decomposition. Our findings show that it is crucial to understand the role of individual members and functional groups within the microbial community. This is an important way forward to understand the role of microbial community composition for the prediction of litter decomposition and subsequent potential carbon storage in grassland soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.