Abstract

Tip growth is a growth stage which occurs in fungal cells. During tip growth, the cell exhibits continuous extreme lengthwise growth while its shape remains qualitatively the same. A model for single celled fungal tip growth is given by the Ballistic Aging Thin viscous Sheet (BATS) model, which consists of a five-dimensional system of first-order differential equations. The solutions of the BATS model that correspond to fungal tip growth arise through a codimension-1 global bifurcation in a two-parameter family of solutions. In this paper we derive a toy model from the BATS model. The toy model is given by two-dimensional system of first-order differential equations which depend on a single parameter. The main achievement of this paper is a proof that the toy model exhibits an analogue of the codimension-1 global bifurcation in the BATS model. An important ingredient of the proof is a topological method which enables the identification of the bifurcation points. Finally, we discuss how the proof may be generalized to the BATS model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.