Abstract

Abstract This work aimed to investigate the influence of fungal strains onto shape, functional properties, and potential applications of biosynthesized nanoparticles (NPs). The aqueous extract of two newly isolated fungal strains, Fusarium keratoplasticum strain (A1-3) and Aspergillus niger strain (G3-1), were used for synthesis of ZnO-NPs. Nanoparticles formation was confirmed by visual observation of color change and UV–visible spectroscopy. The morphological and structural properties of NPs were analyzed by Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS) and zeta potential analyses. Different ZnO-NPs shapes were obtained; where, F. keratoplasticum strain (A1-3) synthesized hexagonal NPs and A. niger strain (G3-1) synthesized nano-rod shape NPs. The antibacterial activities against Gram-negative and Gram-positive bacteria as well as in vitro cytotoxicity against three different animal cell lines exhibited that biocidal activity of NPs is a shape-dependent. Furthermore, nanoparticle shapes greatly affected the multifunctional properties of textile fabrics coated with ZnO-NPs. Nano-rod NPs showed enhanced antibacterial properties against pathogenic bacteria and UV-protection index compared to the hexagonal ZnO-NPs. Therefore, this work provides a gateway to explore shape-dependent properties of biologically synthesized NPs and their potentiality to be utilized for specific applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call