Abstract

Iron is an essential trace element that is limiting in most habitats including hosts for fungal pathogens. Siderophores are iron-chelators synthesized by most fungal species for high-affinity uptake and intracellular handling of iron. Moreover, virtually all fungal species including those lacking siderophore biosynthesis appear to be able to utilize siderophores produced by other species. Siderophore biosynthesis has been shown to be crucial for virulence of several fungal pathogens infecting animals and plants revealing induction of this iron acquisition system during virulence, which offers translational potential of this fungal-specific system. The present article summarizes the current knowledge on the fungal siderophore system with a focus on Aspergillus fumigatus and its potential translational application including noninvasive diagnosis of fungal infections via urine samples, imaging of fungal infections via labeling of siderophores with radionuclides such as Gallium-68 for detection with positron emission tomography, conjugation of siderophores with fluorescent probes, and development of novel antifungal strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call