Abstract

The secondary metabolite production of several fungal strains ofAspergillus creber,Aspergillus jensenii,Aspergillus penicillioides,Aspergillus protuberus, Aspergillus vitricola,Cladosporium cladosporioides, Eurotium chevalieri,Eurotium halophilicum, Penicillium brevicompactum andPenicillium chrysogenum were characterised by liquid chromatography tamdem mass spectometry. All fungi were isolated from both air and book covers as well as from settled dust from a contaminated library in Venice (Italy). ForA. creber andA. jensenii, we identified sterigmatocystin, methoxysterigmatocystin, versicolorin A and related precursors/side metabolites from the biosynthetic pathways. Deoxybrevianamid E, neoechinulin A, pseurotin A and D, and rugulusovin were principally detected from the strains ofE. halophilicum, an emerging fungal species implicated in book contaminations in specific indoor niches. The analysis of settled dust showed a wide range of toxic or bioactive fungal metabolites. Forty-five different metabolites were identified in different concentrations; in particular, high amounts of asperglaucide, alamethicin, andrastin A, terrecyclic acid and neoechinulin A were detected. Also one bacterial metabolite, chloramphenicole was detected. This study increases the knowledge about metabolite production of several fungal species, as well as on the indoor presence of fungi that are not detected by aerobiological sampling. These results emphasise how routine dusting operations are necessary and essential in order to prevent further microbiological developments in library environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.