Abstract

Fungal species are foundational members of soil ecosystems with vital contributions that support interspecies resource translocation. The minute details of these biogeochemical processes are poorly investigated. Here, we addressed this knowledge gap by probing fungal growth in a novel mineral-doped soil micromodel platform using spatially-resolved imaging methodologies. We found that fungi uptake K from K-rich minerals using organic acids exuded in a distance-dependent manner from a carbon-rich hotspot. While identification of specific mechanisms within soil remains challenging, our findings demonstrate the significance of reduced complexity platforms such as the mineral-doped micromodel in probing biogeochemical processes. These findings provide visualization into hyphal uptake and transport of mineral-derived nutrients in a resource-limited environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.