Abstract

We investigated the metabolism of 3-nitrofluoranthene by filamentous fungus, Cunninghamella elegans ATCC 36112. Cunninghamella elegans metabolized about 72% of the 3-nitro[3,4-14C]fluoranthene added during 144 h of incubation to 2 major metabolites. These metabolites were separated by reversed-phase high-performance liquid chromatography and identified as 3-nitrofluoranthene-8-sulfate and 3-nitrofluoranthene-9-sulfate by 1H nuclear magnetic resonance, UV-visible, and mass spectral techniques. These results, in conjunction with previous studies on the fungal metabolism of fluoranthene, indicate that the nitro substituent at the C-3 position of fluoranthene sterically hinders epoxidation and shifts metabolism to the C-8 and C-9 positions. Since the phenolic microsomal metabolites of 3-nitrofluoranthene are mutagenic, the formation of sulfate conjugates of 8- and 9-hydroxy-3-nitrofluoranthene by C. elegans suggests that the fungal metabolic pathways may be beneficial for detoxification of this ubiquitous pollutant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.