Abstract

In this study, performance of biotrickling filters (BTFs) inoculated with fungus Phanerochaete chrysosporium at 30 °C and 40 °C in the absence and presence of silicone oil (10% v/v) was investigated. Removal of toluene was carried out at empty bed residence time (EBRT) of 1 min and at inlet concentrations of 0.5–4.4 g m−3 and 0.5–24.7 g m−3 for one-liquid phase (OLP-BTF) and two-liquid phase BTF (TLP-BTF), respectively. In general, at 40 °C, removal efficiencies (REs) > 80% were obtained in OLP-BTF for the inlet toluene concentrations < 2.5 g m−3, and REs > 70% were obtained for concentrations < 18 g m−3 in TLP-BTF. Based on the balanced equation for biodegradation, fungal respiration produced more CO2 in OLP-BTF (1.38 mol CO2/mole toluene) in comparison to TLP-BTF (0.67 mol CO2/mole toluene). In other words, the presence of oil enhanced microbial growth due to the increase of hydrophobic substrate bioavailability. The activity of extracellular ligninolytic manganese peroxidase (MnP) enzyme produced by the fungal culture was detected in the range of 27.6–71.6 U L−1 (μmol min−1 L−1) at 40 °C in TLP-BTF, while no enzymatic activity was detected in OLP-BTF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.