Abstract

Microbial communities during grape wine fermentations are diverse and dynamic. High-throughput sequencing (molecular methods enabling precise identification of microbial communities) was used to identify fungal diversity during fermentation of grape juice with different sulfite levels and yeast inoculations. Fermentation (0, 14, and 21 days) was evaluated in two grape varieties, Noble (Vitis rotundifolia) and Vignoles (Vitis hybrid), fermented at three sulfite levels (0, 10, and 20 mg/L) with three yeast inoculations (uninoculated, Saccharomyces cerevisiae, and Torulaspora delbrueckii). Fungal taxonomy of both varieties included six to seven phyla and 115 to 129 genera. The indigenous microbiota was affected by sulfite level and yeast inoculation and varied by grape variety. Sulfite levels had minimal effect on fungal communities but did affect fermentation dynamics. Increasing sulfite additions did not affect the fermentation performance of S. cerevisiae but did affect the fermentation of uninoculated juice and T. delbrueckii-inoculated juice. The primary fungal genera (Podosphaera, Candida, Phialemoniopsis, and Meyerozyma)—those present at a relative abundance >1%—were the same for both varieties but at different relative abundance. Similar fungal diversity patterns were observed for both varieties, with a decrease in diversity at day 14 and an increase at day 21 of fermentation. Juices inoculated with T. delbrueckii were rapidly colonized by Torulaspora spp. at day 0 for both varieties, whereas Saccharomyces spp. dominated by day 14 when inoculated with S. cerevisiae, especially in Noble. The most abundant genera in uninoculated juice were Hanseniaspora and Zygoascus for Noble and Hanseniaspora and Saccharomyces for Vignoles. Understanding grape juice microbial communities and the dynamics of these communities during fermentation provides insight for wine production using spontaneous fermentations or non-Saccharomyces species and information on the effect of sulfur dioxide on these novel fermentations.

Highlights

  • Microbial communities during grape wine fermentations are diverse and dynamic

  • The Vignoles juice had a higher level of initial total sugars (263 g/L) than the Noble juice (194 g/L), which resulted in higher ethanol levels in the wine

  • This article is novel because the highthroughput sequencing (HTS) approach was used to determine the impact of sulfite levels and yeast inoculations on wine fungal diversity and dynamics during fermentation (0, 14, and 21 days) of two grape varieties, a muscadine grape (Noble) and a hybrid grape (Vignoles)

Read more

Summary

Introduction

Microbial communities during grape wine fermentations are diverse and dynamic. High-throughput sequencing (molecular methods enabling precise identification of microbial communities) was used to identify fungal diversity during fermentation of grape juice with different sulfite levels and yeast inoculations. Fermentation (0, 14, and 21 days) was evaluated in two grape varieties, Noble (Vitis rotundifolia) and Vignoles (Vitis hybrid), fermented at three sulfite levels (0, 10, and 20 mg/L) with three yeast inoculations (uninoculated, Saccharomyces cerevisiae, and Torulaspora delbrueckii). Fungal taxonomy of both varieties included six to seven phyla and 115 to 129 genera. Fungi colonizing wineries vary depending on vintage, wines produced, and fungi capacities to adapt and survive the stressful conditions of the winery environment (Abdo et al 2020a, 2020b) These winery-associated fungal consortia can affect grape/must/juice microbiota. Initial grape juice microbiota will vary, which is why some studies have found different bacterial or fungal species throughout fermentation compared to other studies (Marzano et al 2016)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call