Abstract

Ribosomal RNA internal transcribed spacer-1 (ITS1) metabarcoding was used to investigate the distribution patterns of fungal communities and the factors influencing these patterns in subtropical Chinese seas, including the southern and northern Yellow Sea and the Bohai Sea. These seas were found to harbor high levels of fungal diversity, with 816 operational taxonomic units (OTUs) that span 130 known genera, 36 orders, 14 classes and 5 phyla. Ascomycota was the most abundant phylum, containing 72.18% and 79.61% of all OTUs and sequences, respectively, followed by Basidiomycota (19.98%, 18.64%), Zygomycota (1.10%, 0.11%), Chytridiomycota (0.25%, 0.04%) and Rozellomycota (0.12%, 0.006%). The compositions of fungal communities across these three sea regions were found to be vary, which may be attributed to sediment source, geographical distance, latitude and some environmental factors such as the temperature and salinity of bottom water, water depth, total nitrogen, and the ratio of total organic carbon to nitrogen. Among these environmental factors, the temperature of bottom water is the most important driver that governs the distribution patterns of fungal communities across the sampled seas. Our data also suggest that the cold-water mass of the Yellow Sea likely balances competitive relationships between fungal taxa rather than increasing species richness levels.

Highlights

  • Ribosomal RNA internal transcribed spacer-1 (ITS1) metabarcoding was used to investigate the distribution patterns of fungal communities and the factors influencing these patterns in subtropical Chinese seas, including the southern and northern Yellow Sea and the Bohai Sea

  • 102,990 quality-filtered ITS1 reads assigned to 3,404 operational taxonomic units (OTUs) with 1,056 singletons were found from 30 samples

  • No significant correlation was observed between any one of the variables tested for OTU richness (P > 0.05)

Read more

Summary

Introduction

Ribosomal RNA internal transcribed spacer-1 (ITS1) metabarcoding was used to investigate the distribution patterns of fungal communities and the factors influencing these patterns in subtropical Chinese seas, including the southern and northern Yellow Sea and the Bohai Sea. The compositions of fungal communities across these three sea regions were found to be vary, which may be attributed to sediment source, geographical distance, latitude and some environmental factors such as the temperature and salinity of bottom water, water depth, total nitrogen, and the ratio of total organic carbon to nitrogen. No data of molecular survey data on fungal diversity levels in these subtropical China seas, i.e., the SYS, NYS and BHS, are currently available. This lack of information on fungal diversity and distribution patterns has hindered the conservation and utilization of fungal resources.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call