Abstract
Associations between plants and fungi were an important and varied feature of early terrestrial ecosystems, but in most instances their biological functions remain poorly understood. We document a new species of fungus colonizing the rooting system of the early lycopod Asteroxylon mackiei, based on exceptionally well-preserved fossils from the Rhynie Chert. We investigated historical petrographic thin sections using standard optical microscopy and confocal laser scanning microscopy. Palaeozoosporites renaultii gen. nov., sp. nov. colonized the inner cortex of the plant rooting system. The fungus had an aseptate thallus with isotomous or sympodial branching. The mycelium bore distinctive porate, globose to elongated structures that we interpret as zoosporangia and resting sporangia. Doubts remain over the precise systematic affinity of P. renaultii, which closely resembles chytrids. Whereas most of the Rhynie Chert plants developed symbiotic associations of the mycorrhizal type, it seems that this was not the case for Asteroxylon mackiei, which possessed the most evolved rooting system among the Rhynie Chert plants. We argue that the new root-borne fungus was probably parasitic. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179, 201–213.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.