Abstract
Materials from renewable carbon feedstock can limit our dependence on fossil carbon and facilitate the transition from linear carbon-intensive economies to sustainable, circular economies. Chitin nanofibrils (ChNFs) isolated from white mushrooms offer remarkable environmental benefits over conventional crustacean-derived nanochitin. Herein, ChNFs are utilized to reinforce polymers of natural and fossil origin, carboxymethyl cellulose (CMC) and polyvinylpyrrolidone (PVP), respectively. Incorporation of 5 wt % ChNFs increases the Young's modulus from 1217 ± 11 to 1509 ± 22 MPa for PVP and from 1979 ± 48 to 2216 ± 102 MPa for CMC. ChNFs increase surface hydrophobicity and retard the scission of the C-H bond as a result of UV-light irradiation in both polymers under investigation. The yellowing from chain scission is reduced, while long-lasting retention of ductility is ensured. Given these results, we propose the utilization of ChNFs in sustainable polymeric materials from renewable carbon with competitive performance against fossil-based benchmark plastics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.