Abstract

Fungal N2O production results from a respiratory denitrification that reduces NO3−/NO2− in response to the oxidation of an electron donor, often organic C. Despite similar heterotrophic nature, fungal denitrifiers may differ from bacterial ones in exploiting diverse resources. We hypothesized that complex C compounds and substances could favor the growth of fungi over bacteria, and thereby leading to fungal dominance for soil N2O emissions. Effects of substrate quality on fungal and bacterial N2O production were, therefore, examined in a 44-d incubation after soils were amended with four different substrates, i.e., glucose, cellulose, winter pea, and switchgrass at 2 mg C g−1 soil. During periodic measurements of soil N2O fluxes at 80% soil water-filled pore space and with the supply of KNO3, substrate treatments were further subjected to four antibiotic treatments, i.e., no antibiotics or soil addition of streptomycin, cycloheximide or both so that fungal and bacterial N2O production could be separated. Up to d 8 when antibiotic inhibition on substrate-induced microbial activity and/or growth was still detectable, bacterial N2O production was generally greater in glucose- than in cellulose-amended soils and also in winter pea- than in switchgrass-amended soils. In contrast, fungal N2O production was more enhanced in soils amended with cellulose than with glucose. Therefore, fungal-to-bacterial contribution ratios were greater in complex than in simple C substrates. These ratios were positively correlated with fungal-to-bacterial activity ratios, i.e., CO2 production ratios, suggesting that substrate-associated fungal or bacterial preferential activity and/or growth might be the cause. Considering substrate depletion over time and thereby becoming limited for microbial N2O production, measurements of soil N2O fluxes were also carried out with additional supply of glucose, irrespective of different substrate treatments. This measurement condition might lead to potentially high rates of fungal and bacterial N2O production. As expected, bacterial N2O production was greater with added glucose than with added cellulose on d 4 and d 8. However, this pattern was broken on d 28, with bacterial N2O production lower with added glucose than with added cellulose. In contrast, plant residue impacts on soil N2O fluxes were consistent over 44-d, with greater bacterial contribution, lower fungal contribution, and thus lower fungal-to-bacterial contribution ratios in winter pea- than in switchgrass-amended soils. Real-time PCR analysis also demonstrated that the ratios of 16S rDNA to ITS and the copy numbers of bacterial denitrifying genes were greater in winter pea- than in switchgrass-amended soils. Despite some inconsistency found on the impacts of cellulose versus glucose on fungal and bacterial leading roles for N2O production, the results generally supported the working hypothesis that complex substrates promoted fungal dominance for soil N2O emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call