Abstract
Bacteria are considered as playing a predominant role in the production of nitrous oxide (N2O) in arable soil. Despite the knowledge that fungi are able to denitrify their contribution to denitrifier N2O production from arable soil is uncertain. Here, we assess the capability of fungi and bacteria to contribute to N2O emission from arable soil by measuring potential denitrification rates (PDR) as N2O production, after application of selective inhibitors aimed at distinguishing between fungal and bacterial denitrification, and related PDR to characteristics of the soil microbial community. Soil was sampled from a long-term crop rotation maintained since 1961 at seven different pH levels, ranging in 0.5 increments from pH 4.5 to 7.5, and along a cultivation gradient from freshly ploughed soil to three years under ley grass. Over both pH and cultivation gradients, bacteria contributed up to 54% and fungi contributed to 18% of the PDR. Residual N2O production that was not targeted by the selective inhibitors and hence could not be attributed to fungi or bacteria might be due to pre-synthesised enzymes or resistant organisms. The PDR of the bacterial community responded positively to increase in soil pH with the lowest PDR at pH 4.2 and the highest around pH 5.9. In contrast, fungal denitrification was not influenced by soil pH. Changes in ester linked fatty acids (ELFA) concentrations showed that whilst total bacterial biomass decreased with increasing pH fungal biomass was not significantly influenced by pH, driving an increase in the ratio of fungal–bacterial biomass. Both fungal biomass and bacterial biomass, and the PDR from the control treatment (no inhibitor application) across the pH gradient were greatest under long-term ley. Concentrations of fatty acids a15:0, 16:1ω7 and 17:1ω8 of microbial origin were positively correlated with the proportion of denitrification activity that was repressed by bacterial inhibitors. This suggests that there is a relationship between organisms that possess the fatty acids a15:0, 16:1ω7 and 17:1ω8, and the function of denitrification. Our results demonstrate that both fungal and bacterial denitrification were occurring in this arable soil. That management for pH and cultivation had differing effects on the potential contribution of fungal and bacterial denitrification to N2O production has implications for the development of appropriate management practices for mitigation of this greenhouse gas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.