Abstract

BackgroundIn Europe, Pinus cembra forests cover subalpine and alpine areas and they are of high conservational and ecological relevance. These forests experience strong seasonality with alternating snow-free and snow covered periods. Although P. cembra is known for mycorrhization and mycorrhizae usually involve fungi, plants and bacteria, the community compositions of fungi and bacteria and their associations in (sub-)alpine P. cembra forests remain vastly understudied. Here, we studied the fungal and bacterial community compositions in three independent (sub-)alpine P. cembra forests and inferred their microbial associations using marker gene sequencing and network analysis. We asked about the effect of snow cover on microbial compositions and associations. In addition, we propose inferring microbial associations across a range of filtering criteria, based on which we infer well justified, concrete microbial associations with high potential for ecological relevance that are typical for P. cembra forests and depending on snow cover.ResultsThe overall fungal and bacterial community structure was comparable with regards to both forest locations and snow cover. However, occurrence, abundance, and diversity patterns of several microbial taxa typical for P. cembra forests differed among snow-free and snow covered soils, e.g. Russula, Tetracladium and Phenoliphera. Moreover, network properties and microbial associations were influenced by snow cover. Here, we present concrete microbial associations on genus and species level that were repeatedly found across microbial networks, thereby confirming their ecological relevance. Most importantly, ectomycorrhizal fungi, such as Basidioascus, Pseudotomentella and Rhizopogon, as well as saprobic Mortierella changed their bacterial association partners depending on snow cover.ConclusionThis is the first study researching fungal-bacterial associations across several (sub-)alpine P. cembra forests. The poorly investigated influence of snow cover on soil fungi and bacteria, especially those mycorrhizing P. cembra roots, but also saprobic soil organisms, underlines the relevance of forest seasonality. Our findings highlight that the seasonal impact of snow cover has significant consequences for the ecology of the ecosystem, particularly in relation to mycorrhization and nutrient cycling. It is imperative to consider such effects for a comprehensive understanding of the functioning resilience and responsiveness of an ecosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call