Abstract
To explore associations of fundus tessellated density (FTD) and compare characteristics of different fundus tessellation (FT) distribution patterns, based on artificial intelligence technology using deep learning. Comprehensive ocular examinations were conducted in 577 children aged 7 years old from a population-based cross-sectional study, including biometric measurement, refraction, optical coherence tomography angiography, and 45° nonmydriatic fundus photography. FTD was defined as the average exposed choroid area per unit area of the fundus, and obtained by artificial intelligence technology. The distribution of FT was classified into the macular pattern and the peripapillary pattern according to FTD. The mean FTD was 0.024 ± 0.026 in whole fundus. Multivariate regression analysis showed that greater FTD was significantly correlated with thinner subfoveal choroidal thickness, larger parapapillary atrophy, greater vessel density inside the optic disc, larger vertical diameter of optic disc, thinner retinal nerve fiber layer, and longer distance from optic disc center to macular fovea (all P < 0.05). The peripapillary distributed group had larger parapapillary atrophy (0.052 ± 0.119 vs 0.031 ± 0.072), greater FTD (0.029 ± 0.028 vs 0.015 ± 0.018), thinner subfoveal choroidal thickness (297.66 ± 60.61 vs 315.33 ± 66.46), and thinner retinal thickness (285.55 ± 10.89 vs 288.03 ± 10.31) than the macular distributed group (all P < 0.05). FTD can be applied as a quantitative biomarker to estimate subfoveal choroidal thickness in children. The role of blood flow inside optic disc in FT progression needs further investigation. The distribution of FT and the peripapillary pattern correlated more with myopia-related fundus changes than the macular pattern. Artificial intelligence can evaluate FT quantitatively in children, and has potential value for assisting in myopia prevention and control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.