Abstract

Retinal vessel oxygen supply is important for retinal tissue metabolism. Commonly used retinal vessel oximetry devices are based on dual-wavelength spectral measurement of oxyhemoglobin and deoxyhemoglobin. However, there is no traceable standard for reliable calibration of these devices. In this study, we developed a fundus-simulating phantom that closely mimicked the optical properties of human fundus tissues. Microchannels of precisely controlled topological structures were produced by soft lithography to simulate the retinal vasculature. Optical properties of the phantom were adjusted by adding scattering and absorption agents to simulate different concentrations of fundus pigments. The developed phantom was used to calibrate the linear correlation between oxygen saturation (SO2) level and optical density ratio in a dual-wavelength oximetry device. The obtained calibration factors were used to calculate the retinal vessel SO2 in both eyes of five volunteers aged between 24 and 27 years old. The test results showed that the mean arterial and venous SO2 levels after phantom calibration were coincident with those after empirical value calibration, indicating the potential clinical utility of the produced phantom as a calibration standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.