Abstract

This paper discovers fundamental principles of the backoff process that governs the performance of IEEE 802.11. A simplistic principle founded upon regular variation theory is that the backoff time has a truncated Pareto-type tail distribution with an exponent of (log y)/ log m (m is the multiplicative factor and γ is the collision probability). This reveals that the per-node backoff process is heavy-tailed in the strict sense for γ > 1/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , and paves the way for the following unifying result. The state-of-the-art theory on the superposition of the heavy-tailed processes is applied to establish a dichotomy exhibited by the aggregate backoff process, putting emphasis on the importance of time-scales on which we view the backoff processes. While the aggregation on normal time-scales leads to a Poisson process, it is approximated by a new limiting process possessing long-range dependence (LRD) on coarse time-scales. This dichotomy turns out to be instrumental in formulating short-term fairness, extending existing formulas to arbitrary population, and to elucidate the absence of LRD in practical situations. A refined wavelet analysis is conducted to strengthen this argument.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.