Abstract
Abstract In this paper we study the relationship between overall cooling effectiveness (or so-called metal effectiveness) and mainstream-to-coolant total temperature ratio (TR), for typical high-pressure nozzle guide vane (HPNGV) cooling systems. The temperature ratio range studied is that between typical experimental conditions (TR ≅ 1.2) and typical engine conditions (TR ≅ 2.0). The purpose is twofold: firstly, to quantify the difference in overall cooling effectiveness between experimental and engine conditions of temperature ratio; and—secondly—to understand the physical bases for the difference, separated in terms of changes in five local surface boundary conditions. We do this using a bespoke conjugate thermal model which includes models of both the internal cooling and the external film cooling layer. Three typical cooling architectures are studied. The results allow comparison and scaling between situations at different conditions of temperature ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.