Abstract
The essential features of nitrogen-14 Nuclear Quadrupole Reson- ance, a new tool based on density matrix calculations is proposed. After a brief review of the density matrix theory, it is demonstrated that, for each of the three NQR transitions, the (3,3) density matrix can be reduced to a (2,2) matrix, evidently easier to handle. (2,2) rotation matrices are defined for predicting, in a straightforward manner, the system evolution under a rf pulse. The first example treated by this methodology concerns nutation experiments (evolution of the signal amplitude as a function of the pulse length) and it is shown that the NMR (Nuclear Magnetic Resonance) flip angle, in the case of powder samples, should be substituted by a pseudo flip angle which is no longer proportional to the pulse length. Still for powder samples, it is demonstrated that, in NQR, data averaging continuously improves when shortening the repetition time. Finally it has been possible to define proper phase cycles in view of measuring relaxation times (T1 and T2) by a two-pulse sequence. In all cases, experimental verifications were performed in order to assess this methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.