Abstract

The concentration of benzene in indoor air has received appreciable attention due to its adverse health effects. Although phytoremediation has been considered as an eco-friendly method to remove benzene, it is unclear how to select plants with a high removal rate. In this study, we evaluated the benzene removal efficiency of four common ornamental plants, Epipremnum aureum, Chlorophytum comosum, Hedera helix and Echinopsis tubiflora, and we also explored the factors impacting benzene removal efficiency. The removal efficiency of all plants in this study averaged at 72 percent. The benzene absorption rates of Epipremnum aureum, Hedera helix and Chlorophytum comosum were 1.10, 0.85 and 0.27 µg·m−3·cm−2, respectively. This is due to the different transpiration rates and chlorophyll concentrations in the plants. The benzene removal efficiency of crassulacean acid metabolism plant (Echinopsis tubiflora) was 23% higher than C3 plant (Epipremnum aureum) under dark conditions. This can be attributed to the fact that the characteristic of Echinopsis tubiflora stomata is different from Epipremnum aureum stomata, which is still open under dark conditions. Therefore, Echinopsis tubiflora can take up more benzene than Epipremnum aureum. For different initial benzene concentrations, the benzene removal efficiency of Echinopsis tubiflora was always great (50–80%), owing to its high rate of transpiration and concentration of chlorophyll. Our findings indicate that transpiration rate and chlorophyll concentration can be used as reference parameters to facilitate ornamental plant screening for indoor air quality improvement.

Highlights

  • Benzene exposure has received appreciable attention due to its adverse health effects

  • The results show that the benzene removal efficiency of Epipremnum aureum under light conditions (68%) was higher, compared with that under normal (55%) or dark conditions

  • The results show that the benzene removal efficiency of Epipremnum aureum tubiflora decreased by 31.3%, 42.4%, 28.4% and 46.9%, respectively

Read more

Summary

Introduction

Benzene exposure has received appreciable attention due to its adverse health effects. Given that people spend more than 80% of their time indoors [3], it is essential to study the effective measures of removing benzene from the indoor air. Each technique has its own disadvantages, such as high operating costs or the production of secondary pollutants [4,5]. To avoid these disadvantages, phytoremediation has been proposed as an eco-friendly alternative technique for the treatment of indoor air pollutants [6,7,8,9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call