Abstract

This study looks at the basic principles of optical parametric processes and recent results on the rapidly developing optical parametric device technology. The theoretical basis of stimulated and spontaneous optical parametric processes and detailed design considerations of optical parametric oscillators and amplifiers are discussed, followed by a review of the materials properties of the most important nonlinear optical crystals for such applications. It concludes with a review of the recent developments on practical low-repetition rate nanosecond optical parametric oscillators and broadly tunable high-repetition rate continuous-pulse-train femtosecond optical parametric oscillations from the uv to the mid ir.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.