Abstract
Fundamental studies of methanol synthesis and decomposition (mainly over Cu-based catalysts) have been carried out. Various kinetic approaches, i.e. TPD study after various chemical treatments of catalyst, non-steady-state transformation of strongly adsorbed species, tracer technique, and steady-state kinetics, have been used. The macroscopic mechanism and detailed reaction scheme of methanol synthesis, as well as the kinetic description of the process have been established and proven. Methanol synthesis over Cu-based catalysts was found to occur by CO2 hydrogenation only, which was coupled with the water-gas shift reaction. Methanol decomposition and steam reforming over Cu-based catalysts have been studied. It was shown that methanol decomposed into a mixture of CO and H2 via methyl formate as an intermediate. Methanol transformation into the mixture of CO2 and H2 occurred by interaction of methanol and water. The reaction proceeded as the reverse methanol synthesis reaction, accompanied by the reverse water-gas shift reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.