Abstract

The mechanism of separating charged species by capillary electrochromatography (CEC) was modeled with the conditions of ideal/linear chromatography by using a simple random walk. The most novel aspect of the work rests with the assumption that in sufficiently high electric field ionized sample components can also migrate in the adsorbed state on the ionized surface of the stationary phase. This feature of CEC leads to the introduction of three dimensionless parameters: alpha, reduced mobility of a sample component with the electrosmotic mobility as the reference; beta, the CEC retention factor; and gamma, the ratio of the electrophoretic migration velocity and the velocity of surface electrodiffusion. Since the interplay of retentive and electrophoretic forces determines the overall migration velocity, the separation mechanism in CEC is governed by the relative importance of the above parameters. The model predicts conditions under which the features of the CEC system engender migration behavior that manifests itself in a relatively narrow elution window and in a gradient like elution pattern in the separation of peptides and proteins by using pro forma isocratic CEC. It is believed that such elution patterns, which resemble those obtained by the use of external gradient of the eluent, are brought about by the formation of an internal gradient in the CEC system that gave rise to concomitant peak compression. The peculiarities of CEC are discussed in the three operational modalities of the technique: co-current, countercurrent, and co-counter CEC. The results suggest that CEC, which is often called "liquid chromatography on electrophoretic platform" is an analytical tool with great potential in the separation of peptides and proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call