Abstract
AbstractAssociation rule mining is one of the fundamental research topics in data mining and knowledge discovery that identifies interesting relationships between itemsets in datasets and predicts the associative and correlative behaviors for new data. Rooted in market basket analysis, there are a great number of techniques developed for association rule mining. They include frequent pattern discovery, interestingness, complex associations, and multiple data source mining. This paper introduces the up‐to‐date prevailing association rule mining methods and advocates the mining of complete association rules, including both positive and negative association rules. © 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 97‐116 DOI: 10.1002/widm.10This article is categorized under: Algorithmic Development > Association Rules
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.