Abstract

Although the LFA-1, Mac-1 and alpha(4) integrins are required for chemotaxis, it is unknown how they are regulated or what specific role they play. Previously we demonstrated that fMLP and IL-8 induce chemotaxis via the p38 MAPK and phosphoinositide 3-kinase (PI3K) pathways, respectively. Here we show that these chemoattractants also activate and use Mac-1 and LFA-1 in a differential manner during chemotaxis. Using integrin-specific substrata, we demonstrate that cell movement in response to IL-8 is mediated by Mac-1, whereas LFA-1 is required for directional migration. By contrast, chemotaxis to fMLP requires Mac-1 for cell movement, whereas LFA-1 and alpha(4)-integrin are required for directional migration. On serum protein, which contains ligands for LFA-1, Mac-1 and alpha(4)-integrin, chemotaxis to fMLP is dependent on Mac-1, whereas chemotaxis to IL-8 is dependent on LFA-1. These results suggest that Mac-1 is the dominant integrin involved in chemotaxis to fMLP, and LFA-1 is the dominant integrin involved in chemotaxis to IL-8. Consistent with these observations, higher quantities of high-affinity Mac-1 are found on cells chemotaxing to fMLP then on cells chemotaxing to IL-8. Moreover, a much larger quantity of clustered LFA-1 was found on cells migrating to IL-8 compared to cells moving towards fMLP. When cells are presented with competing gradients of fMLP and IL-8, they preferentially migrate towards fMLP and activate/utilize integrins in a manner identical to fMLP alone. Under the same conditions, p38 MAPK inhibition abolishes the preferential migration to fMLP; instead, the cells migrate preferentially towards IL-8. The activation and utilization of integrins under these conditions are consistent with patterns observed with IL-8 alone. Together, these data suggest that fMLP and IL-8 differentially activate integrins for use during chemotaxis, that p38 MAPK is a major mediator in the activation and utilization of integrins, and selective integrin activation occurs during chemotaxis between opposing gradients.

Highlights

  • Neutrophil chemotaxis is a complex process involving close coordination of signaling pathways, the actin cytoskeleton, and effector adhesion molecules such as integrins

  • A much larger quantity of clustered LFA-1 was found on cells migrating to interleukin 8 (IL-8) compared to cells moving towards fMLP

  • When cells are presented with competing gradients of fMLP and IL-8, they preferentially migrate towards fMLP and activate/utilize integrins in a manner identical to fMLP alone

Read more

Summary

Introduction

Neutrophil chemotaxis is a complex process involving close coordination of signaling pathways, the actin cytoskeleton, and effector adhesion molecules such as integrins. Two integrins have been shown to be central to neutrophil chemotaxis: LFA1 (CD11a/CD18) and Mac-1 (CD11b/CD18) (Lindbom and Werr, 2002). The importance of these integrins for neutrophil chemotaxis was first identified in leukocyte adhesion deficiency type I (LAD I) patients. These patients have a genetic defect in CD18, the common subunit for both LFA-1 and Mac-1. Little is known about the regulation of LFA-1, Mac-1 and ␣4-integrin during chemotaxis, or if these integrins are regulated differentially by different chemoattractants How these molecules respond in the presence of competing chemoattractant gradients remains to be elucidated

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call