Abstract

The pulsed laser fragmentation in liquid (PLFL) process is a promising technique for the synthesis of carbon-based functional materials. In particular, there has been considerable attention on graphene quantum dots (GQDs) derived from multiwalled carbon nanotubes (MWCNTs) by the PLFL process, owing to the low cost and rapid processing time involved. However, a fundamental deep understanding of the formation of GQDs from MWCNTs by PLFL has still not been achieved despite the high demand. In this work, a mechanism for the formation of GQDs from MWCNTs by the PLFL process is reported, through the combination of experimental and theoretical studies. Both the experimental and computational results demonstrate that the formation of GQDs strongly depends on the pulse laser energy. Both methods demonstrate that the critical energy point, where a plasma plume is generated on the surface of the MWCNTs, should be precisely maintained to produce GQDs; otherwise, an amorphous carbon structure is favorably formed from the scattered carbons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.