Abstract

Bio-food materials are heterogeneous in structure with cellular diversity, where the majority of the water is located in the intracellular spaces. Understanding of the nature of the microscopic behaviour of water transport is crucial to enhance the energy efficiency in food processing and obtain the better quality of processed food. In this research, apoplastic and symplastic transport of cellular water in the bio-food material during drying was investigated using 1H-NMR-T2 relaxometry. We found that intracellular water (ICW) migrates from intracellular spaces to the intercellular spaces by progressive rupturing the cell membranes while drying at a higher temperatures (60 °C–70 °C). In this case, apoplastic process dominates the transport process. However, at lower temperature (45 °C), cell membranes do not rupture and therefore ICW migrates from cell to the neighbouring cell through micro-capillaries, where the symplastic process dominates the mass transfer at different stages of drying.

Highlights

  • ObjectivesThe main aim of this paper is to uncover the ICW transport process, and evaluate the effect of different drying temperature on apoplastic transport process during drying

  • It was found that ICW migrates from intracellular spaces to the intercellular spaces through extracellular pathways and intracellular pathways

  • Before reaching the cell wall collapsing temperature (50 °C) inside the sample, the ICW migrates from intracellular spaces to the intercellular spaces through micro-capillaries following the intracellular pathways

Read more

Summary

Objectives

The main aim of this paper is to uncover the ICW transport process, and evaluate the effect of different drying temperature on apoplastic transport process during drying

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.