Abstract
Abstract Several experimental efforts are underway to measure the power spectrum of 21 cm fluctuations from the epoch of reionization (EoR) using low-frequency radio interferometers. Experiments like the Hydrogen Epoch of Reionization Array (HERA) and Murchison Widefield Array Phase II (MWA) feature highly redundant antenna layouts, building sensitivity through redundant measurements of the same angular Fourier modes, at the expense of diminished UV coverage. This strategy limits the numbers of independent samples of each power spectrum mode, thereby increasing the effect of sample variance on the final power spectrum uncertainty. To better quantify this effect, we measure the sample variance of a delay-transform based power spectrum estimator, using both analytic calculations and simulations of flat-spectrum EoR-like signals. We find that for the shortest baselines in HERA, the sample variance can reach as high as 20 per cent, and up to 30 per cent for the wider fields of view of the MWA. Combining estimates from all the baselines in a HERA- or MWA-like 37 element redundant hexagonal array can lower the variance to 1−3 per cent for some Fourier modes. These results have important implications for observing and analysis strategies, and suggest that sample variance can be non-negligible when constraining EoR model parameters from upcoming 21 cm data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.