Abstract

We offer a consistent dynamical formulation of stationary scattering in two and three dimensions that is based on a suitable multidimensional generalization of the transfer matrix. This is a linear operator acting in an infinite-dimensional function space which we can represent as a $2\times 2$ matrix with operator entries. This operator encodes the information about the scattering properties of the potential and enjoys an analog of the composition property of its one-dimensional ancestor. Our results improve an earlier attempt in this direction [Phys. Rev. A 93, 042707 (2016)] by elucidating the role of the evanescent waves. In particular, we show that a proper formulation of this approach requires the introduction of a pair of intertwined transfer matrices each related to the time-evolution operator for an effective non-unitary quantum system. We study the application of our findings in the treatment of the scattering problem for delta-function potentials in two and three dimensions and clarify its implicit regularization property which circumvents the singular terms appearing in the standard treatments of these potentials. We also discuss the utility of our approach in characterizing invisible (scattering-free) potentials and potentials for which the first Born approximation provides the exact expression for the scattering amplitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.