Abstract

Applications of 3D printing technology become more widespread in many research fields because of its rapid development and valuable capabilities. In rock mechanics and mining engineering, this technology has the potential to become a useful tool that might help implement a number of research studies previously considered impractical. Most commercial 3D printers cannot print prototypes with mechanical properties that match precisely those of natural rock samples. Therefore, some additional enhancements are required for 3D printers to be effectively utilized for rock mechanics applications. In this study, we printed and studied specimens using a powder-based commercial ZPrinter® 450 with ZP® 150 powder and Zb® 63 binder used as raw materials. The specimens printed by this 3D printer exhibited relatively low strength and ductile behavior, implying that it needs further improvements. Hence, we focused on several ways to determine the best combination of printing options and post-processing including the effects of the printing direction, printing layer thickness, binder saturation level, and heating process on the uniaxial compressive strength (UCS) and stress–strain behavior of the printed samples. The suggested procedures have demonstrated their effectiveness by obtaining the printed samples that behave similarly to the natural rocks with low UCS. Although our optimization methods were particularly successful, further improvements are required to expand 3D printer application in the area of rock mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.