Abstract
Development of a practical method of Sn removal in the steelmaking process is necessary from the viewpoints of promoting use of scrap procured in the market and reducing energy consumption. It is well known that Sn promotes surface cracks of billets in hot rolling by coexisting with Cu. Although various methods of Sn removal have been investigated in laboratory experiments, enough Sn removal efficiency for commercially use has not been obtained. In the present study, Sn removal from high-S hot metal by NH3 gas blowing was investigated in laboratory experiments as a new method of Sn removal. The laboratory experiment on Sn removal from hot metal was carried out using up to a 10 kg-scale vacuum induction melting furnace. Sn removal was accelerated while blowing NH3 gas, and the evolution of gas bubbles were observed at the hot metal surface. Within the ranges of these experiments, higher temperature and higher concentrations of S and N were advantageous for Sn removal. The mechanism of the acceleration of Sn removal by NH3 gas blowing could be estimated that oversaturated N or H in hot metal made small bubbles to increase the hot metal surface for SnS evaporation. In the estimation of Sn removal ratio in plant-scale operation, it could reach 40%. For further rapid Sn removal, it was necessary to maximize [N] of hot metal by optimizing the lance height or flow rate of NH3 gas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.