Abstract

The present work deals with the changing network morphology of whey protein isolate (15%, w/w) in the presence of glucose syrup (co-solute) with concentrations ranging from 0% to 65%(w/w) in 10mM CaCl2 solution, thus producing formulations with a total level of solids of up to 80%(w/w). Denaturation behaviour and aggregation of whey protein systems were investigated using small deformation dynamic oscillation on shear, micro and modulated differential scanning calorimetry, and confocal laser scanning microscopy. A progression in the mechanical strength of protein aggregates was observed resulting from enhanced protein–protein interactions in the presence of glucose syrup. Addition of the co-solute resulted in better thermal stability of protein molecules by shifting the process of denaturation to higher temperature, as observed by calorimetry. Observations are supported by micrographs showing coherent networks with reduced size of whey protein aggregates in the presence of high levels of glucose syrup, as opposed to thick and random clusters for systems of whey protein by itself. Glass transition phenomenon was observed for condensed protein/co-solute systems, which were treated with theoretical concepts adapted from synthetic polymer research to pinpoint the mechanical glass transition temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.