Abstract

Intense (10/sup 11/ particles/1 /spl mu/s /spl sim/300 MeV/u) heavy ion beams are generated in the heavy-ion synchrotron (SIS) of the GSI-Darmstadt facility. Large volumes of strongly coupled plasmas are produced by heavy ion beam interaction with solid targets, with plasma densities close to the solid state, pressures of about 100 kbar, and temperatures of up to 1 eV, with relevance for equation of state (EOS) of matter, astrophysics, and low-entropy shock compression of solids. The plasmas created by ion beam interaction with metallic converters and cryogenic crystals were studied by backlighting shadowgraphy and by time-resolved spectroscopy in the visible and vacuum ultraviolet ranges. Low entropy weak shock waves induced by the ion beams in the metal-plexiglass multilayered targets were visualized by time resolved schlieren measurements, revealing induced multiple shockwaves with pressures higher than 15 kbar in a plexiglass window and propagation velocities up to 35% higher than the speed of sound in plexiglass at room temperature. To get an insight into the plasma dynamics, both types of experiments are simulated by the BIG-2 two-dimensional hydrodynamic code.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call