Abstract
Fundamental solutions of the operator of Navier's differential equation (equilibrium equation) for the elastostatic boundary value problem are established. The solutions are not defined on the ordinary three-dimensional space as the classical Kelvin solution but on Riemann spaces. They can be used as kernels of boundary integral equations. It should be possible to apply integral equations of this type advantageously for the determination of the state of deformation in elastic bodies parts of the surface of which touch or almost touch each other (bodies with slits, certain helical elastic springs, etc.).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.