Abstract

In present article we consider the problems of concentrated point force which is moving with constant velocity and oscillating with cyclic frequency in unbounded homogeneous anisotropic elastic two-dimensional medium. The properties of plane waves and their phase, slowness and ray or group velocity curves for 2D problem in moving coordinate system are described. By using the Fourier integral transform techniques and established the properties of the plane waves, the explicit representation of the elastodynamic Green's tensor is obtained for all types of source motion as a sum of the integrals over the finite interval. The dynamic components of the Green's tensor are extracted. The stationary phase method is applied to derive an asymptotic approximation of the far wave field. The simple formulae for Poynting energy flux vectors for moving and fixed observers are presented too. It is noted that in the far zones the cylindrical waves are separated under kinematics and energy. It is shown that the motion bring some differences in the far field properties. They are modification of the wave propagation zones and their number, fast and slow waves appearance under trans- and superseismic motion and so on.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.