Abstract

SynopsisWe construct a fundamental solution for the n dimensional time independent anisotropic neutron transport equation. This is an operator valued distribution G(x) with a singularity at the origin. By estimating G(x) we are able to construct smooth solutions to the transport equation. We are also able to derive in a straightforward fashion results of Birkhoff and Abu-Shumays on the existence of harmonic solutions to the isotropic transport equation. When n = 1, G(x) is a function which is continuous except at x = 0. We show that the classical formula for the jump of G(x) at the origin is equivalent to the completeness of Case's full range eigenfunction expansion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.