Abstract
Time-harmonic loading over layered elastic half-spaces has applications in various science and engineering fields. While various approaches have been proposed in solving the related boundary-value problems, in this paper, we propose a new approach, which is based on the novel Fourier-Bessel series system of vector functions and the dual variable and position method (DVP). While the DVP method was proposed recently and verified to be computationally stable and efficient, the Fourier-Bessel series system of vector functions is newly introduced. Similar to the cylindrical system of vector functions, the normal (dilatational) and shear (torsional) deformations (waves) can be separated and solved in terms of the LM- and N-types of the new vector function system. The new formulation is coded, and the corresponding algorithm/program is applied to a couple of cases. It is shown that, by comparing previous approaches, this new series system of vector functions is equally accurate, but much more computationally powerful. Since it is substantially time saving in calculation, it is hopeful that this new approach would have broad applications related to transient response and inverse problems in elastodynamics of layered systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.