Abstract

Experiments that look for nonlinear quantum dynamics test the fundamental premise of physics that one of two separate systems can influence the physical behavior of the other only if there is a force between them, an interaction that involves momentum and energy. The premise is tested because it is the assumption of a proof that quantum dynamics must be linear. Here, variations of a familiar example are used to show how results of nonlinear dynamics in one system can depend on correlations with the other. Effects of one system on the other, influence without interaction between separate systems, not previously considered possible, would be expected with nonlinear quantum dynamics. Whether it is possible or not is subject to experimental tests together with the linearity of quantum dynamics. Concluding comments and questions consider directions our thinking might take in response to this surprising unprecedented situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.