Abstract

Starting with geometrical premises, we infer the existence of fundamental cosmological scalar fields. We then consider physically relevant situations in which spacetime metric is induced by one or, in general, by two scalar fields, in accord with the Papapetrou algorithm. The first of these fields, identified with dark energy (DE), has exceedingly small but finite (subquantum) Hubble mass scale ([Formula: see text] eV), and might be represented as a neutral superposition of quasi-static electric fields. The second field is identified with dark matter (DM) as an effectively scalar conglomerate composed of primordial neutrinos and antineutrinos in a special tachyonic state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call