Abstract

In this study, a Cerenkov radiation sensor for detecting low-energy beta-particles was fabricated using various Cerenkov radiators such as an aerogel and CaF2-, SiO2-, and Al2O3-based optical glasses. Because the Cerenkov threshold energy (CTE) is determined by the refractive index of the Cerenkov radiator, the intensity of Cerenkov radiation varies according to the refractive indices of the Cerenkov radiators. Therefore, we measured the intensities of Cerenkov radiation induced by beta-particles generated from a radioactive isotope as a function of the refractive indices of the Cerenkov radiators. Also, the electron fluxes were calculated for various Cerenkov radiators by using a Monte Carlo N-Particle extended transport code (MCNPX) to determine the relationship between the intensities of the Cerenkov radiation and the electron fluxes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.