Abstract

We investigate the fundamental relation between entropy production rate and the speed of energy exchange between a system and baths in classical Markov processes. We establish the fact that quick energy exchange inevitably induces large entropy production in a quantitative form. More specifically, we prove two inequalities on instantaneous quantities: One is applicable to general Markov processes induced by heat baths, and the other is applicable only to systems with the local detailed-balance condition but is stronger than the former one. We demonstrate the physical meaning of our result by applying to some specific setups. In particular, we show that our inequalities are tight in the linear response regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.