Abstract

Sulfur hexafluoride (SF6) gas, used widely in high-voltage circuit breakers, can produce a remarkable greenhouse effect if released into the atmosphere. Fundamental properties of SF6 mixed with CO2 at high temperatures are presented in this paper, considering their reduction of adverse impact on the environment as a replacement for pure SF6 in high-voltage circuit breakers: to the knowledge of the authors, related data have not been reported in the literature. The species composition and thermodynamic properties (mass density, enthalpy and specific heat at constant pressure) are determined by the method of Gibbs free energy minimization, using standard thermodynamic tables. The transport properties, including viscosity, thermal conductivity and electrical conductivity, are evaluated by using the Chapman–Enskog method expanded up to the third-order approximation (second order for viscosity). Particular attention is paid to the establishment of a collision integral database related to a reacting species system containing basic elements of carbon, oxygen and sulfur as well as fluoride by the use of recent cross sections or interaction potentials available in the literature. The calculations, which assume a local thermodynamic equilibrium, are performed in the temperature range 300 to 30 000 K for different pressures between 0.01 and 1.6 MPa. The results obtained are compared to those of previously published studies, and the reasons for discrepancies are analysed. An evaluation of the current interruption performance by adding CO2 to SF6 is discussed from a microscopic point of view. The results provide reliable reference data for the simulation of switching arcs in high-voltage circuit breakers in SF6–CO2 mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.