Abstract

In container liner shipping, bunker cost is an important component of the total operating cost, and bunker consumption increases dramatically when the sailing speed of containerships increases. A higher speed implies higher bunker consumption (higher bunker cost), shorter transit time (lower inventory cost), and larger shipping capacity per ship per year (lower ship cost). Therefore, a container shipping company aims to determine the optimal sailing speed of containerships in a shipping network to minimize the total cost. We derive analytical solutions for sailing speed optimization on a single ship route with a continuous number of ships. The advantage of analytical solutions lies in that it unveils the underlying structure and properties of the problem, from which a number of valuable managerial insights can be obtained. Based on the analytical solution and the properties of the problem, the optimal integer number of ships to deploy on a ship route can be obtained by solving two equations, each in one unknown, using a simple bi-section search method. The properties further enable us to identify an optimality condition for network containership sailing speed optimization. Based on this optimality condition, we propose a pseudo-polynomial-time solution algorithm that can efficiently obtain an epsilon-optimal solution for sailing speed of containerships in a liner shipping network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.