Abstract

ABSTRACT Very-high-energy (VHE) BL Lacertae (BL Lac) spectra extending above $10 \, \rm TeV$ provide a unique opportunity for testing physics beyond the standard model of elementary particle and alternative blazar emission models. We consider the hadron beam scenario, the conversion of photons to axion-like particles (ALPs) and the Lorentz invariance violation (LIV) by analysing their consequences and induced modifications to BL Lac spectra. In particular, we consider how different processes can provide similar spectral features (e.g. hard tails) and we discuss the ways they can be disentangled. We use data from High-Energy Gamma-Ray Astronomy (HEGRA) of a high state of Markarian 501 and the High-Energy Stereoscopic System (H.E.S.S.) spectrum of the extreme BL Lac (EHBL) 1ES 0229+200. In addition, we consider two hypothetical EHBLs similar to 1ES 0229+200 located at redshifts z = 0.3 and z = 0.5. We observe that both the hadron beam and the photon–ALP oscillations predict a hard tail extending to energies larger than those possible in the standard scenario. Photon–ALP interaction predicts a peak in the spectra of distant BL Lacs at about $20\rm {-}30 \, \rm TeV$, while LIV produces a strong peak in all BL Lac spectra around $\sim 100 \, \rm TeV$. The peculiar feature of the photon–ALP conversion model is the production of oscillations in the spectral energy distribution, so that its detection/absence can be exploited to distinguish between the considered models. The above-mentioned features of the three models might be detected by the upcoming Cherenkov Telescope Array. Thus, future observations of BL Lac spectra could eventually shed light on new physics and alternative blazar emission models, driving fundamental research towards a specific direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call