Abstract

We present a new method to calculate fundamental Doppler measurement limits with a dispersed fixed-delay interferometer (DFDI) in the near infrared wavelength region for searching for exoplanets around M dwarfs in the coming decade. It is based on calculating the Q factor, a measure of flux-normalized Doppler sensitivity in the fringing spectra created with DFDI. We calculate the Q factor as a function of spectral resolution R, stellar projected rotational velocity V sini, stellar effective temperature T_eff and optical path difference (OPD) of the interferometer. We also compare the DFDI Q factor to that for the popular cross-dispersed echelle spectrograph method (the direct echelle (DE) method). Given the IR Doppler measurement is likely to be detector-limited for a while, we introduce new merit functions, which is directly related to photon-limited RV uncertainty, to evaluate Doppler performance with the DFDI and DE methods. We find that DFDI has strength in wavelength coverage and multi-object capability over the DE for a limited detector resource. We simulate the performance of the InfraRed Exoplanet Tracker (IRET) based on the DFDI design, being considered for the next generation IR Doppler measurements. The predicted photon-limited RV uncertainty suggests that IRET is capable of detecting Earth-like exoplanets in habitable zone around nearby bright M dwarfs if they exist. A new method is developed to quantitatively estimate the influence of telluric lines on RV uncertainty. Our study shows that photon-limited RV uncertainty can be reached if 99% of the strength of telluric lines can be removed from the measured stellar spectra. At low to moderate levels of telluric line strength removal (50% to 90%), the optimal RV uncertainty is typically a factor of 2-3 times larger than photon-limited RV uncertainty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call