Abstract
The utilization of nanoparticles for a variety of applications has raised much interest in recent years as new knowledge has emerged in nanochemistry. New and diverse methods for synthesis, characterization, and application of these particles have been discovered with differing degrees of ease and reproducibility. Post-synthetic modification of nanoparticles is often a required step to facilitate their use in applications. The reaction conditions and chemical environment for the nanoparticle synthesis may not support or may conflict with further reactions. For this reason, it is beneficial to have phase transfer methods for nanoparticles to allow for their dispersion in a variety of solvents. Phase transfer methods are often limited in the types and sizes of particles that can be effectively dispersed in an immiscible solvent. Currently, general transfer methods for a wide variety of nanoparticles have not been identified. New routes for phase transfer allow for utilization of a larger range of particles in applications which were previously limited by solubility and reactivity issues. In this work, we will describe the fundamental methods for the phase transfer of metallic nanoparticles. We will look at the major problems and pitfalls of these methods. The applications of phase transfer will also be reviewed, mainly focusing on catalysis and drug delivery.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.