Abstract

Raman lasing can be a promising way to generate highly coherent chip-based lasers, especially in high-quality (high-Q) crystalline microcavities. Here, we measure the fundamental linewidth of a stimulated Raman laser in an aluminum nitride (AlN)-on-sapphire microcavity with a record Q-factor up to 3.7 million. An inverse relationship between fundamental linewidth and emission power is observed. A limit of the fundamental linewidth, independent of Q-factor, due to Raman-pump-induced Kerr parametric oscillation is derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.