Abstract

Wireless information-centric networks consider storage as one of the network primitives, and propose to cache data within the network in order to improve latency and reduce bandwidth consumption. We study the throughput capacity and latency in an information-centric network when the data cached in each node has a limited lifetime. The results show that with some fixed request and cache expiration rates, the order of the data access time does not change with network growth, and the maximum throughput order is not changing with the network growth in grid networks, and is inversely proportional to the number of nodes in one cell in random networks. Comparing these values with the corresponding throughput and latency with no cache capability (throughput inversely proportional to the network size, and latency of order $\sqrt{n}$ and the inverse of the transmission range in grid and random networks, respectively), we can actually quantify the asymptotic advantage of caching. Moreover, we compare these scaling laws for different content discovery mechanisms and illustrate that not much gain is lost when a simple path search is used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call