Abstract

Volume-based network denial-of-service (DoS) attacks refer to a class of cyber attacks where an adversary seeks to block user traffic from service by sending adversarial traffic that reduces the available user capacity. In this paper, we explore the fundamental limits of volume-based network DoS attacks by studying the minimum required rate of adversarial traffic and investigating optimal attack strategies. We start our analysis with single-hop networks where user traffic is routed to servers following the Join-the-Shortest-Queue (JSQ) rule. Given the service rates of servers and arrival rates of user traffic, we first characterize the feasibility region of the attack and show that the attack is feasible if and only if the rate of the adversarial traffic lies in the region. We then design an attack strategy that is (i).optimal: it guarantees the success of the attack whenever the adversarial traffic rate lies in the feasibility region and (ii).oblivious: it does not rely on knowledge of service rates or user traffic rates. Finally, we extend our results on the feasibility region of the attack and the optimal attack strategy to multi-hop networks that employ Back-pressure (Max-Weight) routing. At a higher level, this paper addresses a class of dual problems of stochastic network stability, i.e., how to optimally de-stabilize a network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call